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Abstract With the redundancy and complexity of infor-

mation and data, how to acquire the samples that meet the

requirements is an inevitable task in data analysis. There is

a general consensus that the neighborhood rough set (NRS)

has become the mainstream method for data mining and

knowledge classification. Whereas, the limitations still

exist in the neighborhood relation for it cannot more

accurately reflect the dominance relations that commonly

exist in actual data, nor can it select the required data

according to different conditions. Enlightened by this idea,

this paper focuses on the intuitionistic fuzzy neighborhood

dominance relation, which both refines the relationship

between samples in the neighborhood and mines the nee-

ded samples in data analysis. On this basis, we define the

neighborhood dominance rough set (NDRS) model in

intuitionistic fuzzy ordered information system (IFOIS).

Moreover, we establish the multigranulation neighborhood

dominance rough set (MNDRS) from multiple perspec-

tives, and discuss related properties between NDRS and

MNDRS. Meanwhile, we compare the NDRS with other

rough set models from the roughness and the dependence

degree viewpoints. Finally, we adopt nine UCI data sets

and implement a series of experiments to illustrate the

feasibility and effectiveness of the proposed models.

Keywords Neighborhood rough set � Intuitionistic fuzzy

set � Neighborhood dominance relation � Ordered
information system � Multigranulation rough set

1 Introduction

Rough set theory (RST), proposed by Pawlak [30] in 1982,

is an effective tool for knowledge discovery and rule

extraction in information systems. As an extension of

classical set theory, the idea of RST is to approximate some

inaccurate and uncertain concepts with known knowledge.

In recent years, the computing method in RST has aroused

wide attention, and its related research has been applied in

many important fields, such as data mining [9, 22, 25, 38],

decision analysis [20, 24, 37, 41], and medical diagnosis

[23, 39, 40, 50].

In 1986, Atanassov [1] proposed intuitionistic fuzzy set

(IFS), an extension of fuzzy set theory [20, 31], to accu-

rately characterize the uncertainty of objects. In the intu-

itionistic fuzzy set theory, an object can be characterized

not only by the membership degree, but also by the non-

membership degree and hesitation degree. The introduction

of IFS greatly improves the description of the object’s

features and makes the description of the object more

accurate and specific. The combination of intuitionistic

fuzzy set theory and RST produces a new rough set model

to deal with intuitionistic fuzzy data sets. For example, Lu

and Lei [17] designed an attribute reduction algorithm

based on intuitionistic fuzzy rough set (IFRS). Huang et al.

[14] extended IFRS model to two types of multi-granula-

tion intuitionistic fuzzy rough set models, and discussed

their basic properties. De et al. [27] investigated three-way

decisions with intuitionistic fuzzy decision-theoretic rough

sets based on point operators and many other relevant
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generalizations. This article is based on the intuitionistic

fuzzy dataset as the research goal.

With the diversification and complexity of information

and data. In order to handle these variable and complex

datas flexibly, some researchers have proposed binary

relations [8, 11, 19, 29] on the basis of equivalence rela-

tions, such as neighborhood relations [4, 36, 49], tolerance

relations [32, 35], etc. Among these relations, the neigh-

borhood rough set (NRS) based on neighborhood relations

is very significant in handling numerical datasets, which

can reduce the number of noise samples. As shown in

Fig. 1b neighborhood relation, samples with the object xi
are partitioned into two groups S1 and S2, where the group

S2 are the noise samples whose distance from the object xi
is greater than d: During the past years, some scholars have

managed related achievements with NRS as the tool of

their research. For example, Wang and Qian proposed local

NRS model for attribute reduction [28]. Hu and Yu studied

heterogeneous feature subset selection based on NRS [16].

Sun et al. presented feature selection using fuzzy neigh-

borhood entropy-based uncertainty measures for fuzzy

neighborhood multigranulation rough sets [10].

For an intuitionistic fuzzy ordered information system

(IFOIS), the order relationship between samples is well

described by dominance relations. Since the classical RST

fail to process the partial order relationship of attribute

domains. Therefore, Greco et al. presented the dominance-

based rough set approach (DRSA) [12], and its relation

takes into account the ordering properties of criteria [13].

As shown in Fig. 1a Dominance relation, the samples in

the data can be roughly divided into four groups S1; S1; S3
and S4 according to the relationship between the other

samples and a certain sample point xi. The group S1 rep-

resents the samples that are dominating xi, and S2 shows

the samples that are dominated by xi. Otherwise, S3 and S4
denote the samples that are neither dominating nor domi-

nated by xi. How to use the DRSA model to mine the

knowledge in the order information system is a hot topic in

research. Xu et al. considered attribute reduction in inter-

val-valued fuzzy ordered decision tables [43]. Yang et al.

considered dominance-based rough set approach and

knowledge reductions in incomplete ordered information

system [5]. And Yang and Yu et al. studied dominance-

based rough set approach to incomplete interval-valued

information system [47]. On the basis of single granulation

dominance rough set approach (DRSA), Yang et al.

introduced the models of dominance–based multigranula-

tion rough sets [46], and many other valuable

achievements.

From the rough set models mentioned above, the NRS

realizes the processing of continuous data and the classi-

fication of similar samples, avoiding the influence of noisy

samples and the loss of potential information. In an ordered

dataset, the classification of samples is inseparable from the

investigation of the partial order relationship of the data.

Hence, it is necessary to refine the relationship between

samples in the neighborhood to obtain the required objects

more accurately. In today’s life, there exists many prob-

lems such as college examinations, talent selections and

housing screening, etc., which involve sorting of samples

and the classification of objects. In view of the tolerance of

NRS and the robustness of DRSA, how to utilize these two

models to solve the issue of sample selection in practical

problems is a motivation of this study.

Fig. 1 The relationship among objects

X. Zhang et al.: Multigranulation Rough Set Methods and Applications… 3603

123



Combined the idea of NRS and DRSA, the neighbor-

hood dominance rough set (NDRS) model can be obtained.

In the dataset, the neighborhood dominance relationship

considers both the similarity and the partial order relation

between samples, which helps to further extract samples

with the same characteristics in the information granules.

Through the neighborhood dominance relation, we can

obtain samples with more similar features based on the

target set. As shown in Fig. 2c neighborhood dominance

relation, the groups S1 and S2 show that not only the set of

objects is dominating xi or dominated by xi, but also the

distance from xi is less than or equal to d. Groups S3; S4
represent the distance between objects and xi is less than or

equal to d, they are neither dominated nor dominating xi.

Similarly, we can obtain the groups S5; S6; S7 and S8. They

are sets of objects outside the neighborhood threshold d
which keep the partial order relationship unchanged. By

altering d, the dominance and dominated objects will

change accordingly in applications. In addition, for a

clearer display and an intuitive comparison between the

NDRS model and other previous models, we show the

details in Table 1. The distance-based rough set model

proposed by Huang et al. [18] defines the distance between

intuitionistic fuzzy numbers, but it fail to characterize the

order relationship between samples and therefore cannot

filter the qualified samples. With respect to IFIS, Bing et al.

[2, 3] both considered the dominance relation in IFS and

interval-valued IFS. However, the dominance relation

alone cannot cope with the impact of noisy samples or the

more precise requirements. On the basis of dominance

relation, Zhang et al. [51] proposed generalized dominance

relation to reduce the loss of valid information. Further-

more, Huang et al. [21] and Xue et al. [45] discussed the

combination of MGRS an IFS in their research, which

further expanded the application scope of IFRS. And the

notion of neighborhood was introduced in the study of Xue

et al. Nevertheless, the lack of research on dominance

relations renders the model incapable of selecting the

required samples.

The NDRS is a new hybrid model to process hybrid

dataset in information systems while finding common

qualified samples in the dataset. In contrast, the existing

dominance-based neighborhood rough set (DNRS) is a

model to handle information systems while seeking dif-

ference in the dataset, and some achievements based on

DNRS model have been made to the field of attribute

reduction research. In 2015, Chen et al. first put forward an

important tool named dominance-based NRS and designed

its attribute reduction [6]. In 2016, Chen et al. discussed a

parallel attribute reduction in dominance-based neighbor-

hood rough set model [7]. Then Sang proposed incremental

approaches for heterogeneous feature selection in dynamic

ordered data [8]. For one side, aiming to deeply mine the

required data and handle the problem of sample selection in

data analysis. For the other side, simulating the firmness

and hesitation of people when making decisions. Accord-

ingly, what we investigate is the NDRS model in IFOIS.

In practical applications, it is commonly necessary to

characterize data from multiple levels and multiple aspects.

However, the classical rough set model is based on a single

granulation and a single level, and cannot analyze prob-

lems or mine knowledge from a multi-faceted and deep

layer. Since Qian et al. [26] proposed multi-granulation

rough set (MGRS), which enables the target set to be

depicted by information particles in multiple granular

spaces. In a consequence, the problem can be analyzed

from different angles and multiple levels, so as to obtain a

more satisfactory and reasonable solution. Subsequently,

many scholars are devoted to the research of multigranu-

lation rough sets [15, 29, 33]. Xu et al. proposed a gener-

alized multigranulation rough set approach [34], and it is a

generalized model between optimistic and pessimistic

multigranulation rough set models. After two years, Xu

et al. proposed two kinds of generalized multigranulation

rough set [42] and local multigranulation decision-theoretic

rough set in ordered information systems [44], in which the

lower and upper approximation operators were defined and

the related properties were discussed. Considering the

increase or decrease of granulations, Yang et al. presented

updating multigranulation rough approximations with

increasing of granular structures [48]. In addition, Huang

et al. extended the multigranulation theory to the IFRS

[21]. Consistent with these scholars, in order to make the

NDRS widely applied to intuitionistic fuzzy datasets, weFig. 2 The relationship among objects
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extend the NDRS model from the perspective of MGRS.

This extension has significant implications in mining dee-

per hidden knowledge and dealing with intuitionistic fuzzy

datasets.

With the complexity of the data form, in view of the

advantages of IFS in describing the data, we construct the

NDRS model and MNDRS model to solve the problem of

sample selection from single-level and multi-level per-

spective, and further explore the uncertainty and imprecise

knowledge in data. As shown in Fig. 3, the contributions of

our work are as follows: (1) A novel relation named

neighborhood dominance relation both owes the classifi-

cation effect of neighborhood relations and the sorting

feature of dominance relations is presented. On this basis,

we propose the NDRS model in IFOIS. (2) We dissect the

shortcomings of the application of the NRS model, and

effectively illustrate the feasibility and validity of the

NDRS model according to the mathematical analysis and

practical problems. (3) We extend NDRS to two types of

MNDRS, and carefully discuss the connection of NDRS

and MNDRS. The corresponding algorithms for computing

uncertainty measures of NDRS and MNDRS are also

researched. (4) Moreover, through the analysis and com-

parison of the experimental results, the effectiveness of

NDRS and MNDRS in IFOIS is verified.

This paper is organized as follows. In Sect. 2, we review

some basic concepts about NRS in IFOIS. Section 3 defines

the NDRS model and its uncertainty measures in IFOIS,

meanwhile, an actual case is illustrated to verify the supe-

riority of NDRS. In addition, Sect. 4 introduces two types of

MNDRS in IFOIS and related properties. And Sect. 5mainly

explores the uncertaintymeasures ofMNDRS. In Sect. 6, we

exhibit two algorithms for computing the roughness and the

dependence degree of NRS, NDRS and MNDRS, respec-

tively. Furthermore, someUCI data sets are used to verify the

effectiveness of proposed theorems in Sect. 7. Eventually,

Sect. 8 ends up with the summarization of the paper and

proposal of the future work.

Table 1 The review and

comparison of the proposed

methods in IFIS

Year Authors Researches Methods

2011 Huang et al. Distance-based rough set model in IFIS and its application [20] Dis-RSA

2012 Bing et al. A dominance interval-valued IFRS model and its application [2] Iv-DRSA

2013 Bing et al. Dominance-based rough set model in IFIS [3] DRSA

2014 Zhang et al. Generalized dominance-based rough set model for IFIS [44] GDRSA

2014 Huang et al. Intuitionistic fuzzy multigranulation rough sets [17] MGRS

2017 Xue et al. Model of multi-granulation neighborhood rough IFS [39] MNRS

2022 Zhang et al. MGRS methods and applications based on NDR in IF datasets NDRS

Fig. 3 System diagram of our work
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2 Preliminaries About NRS in IFOIS

As a structure that rigorously reflects the degree of favor

and against of experts when judging things, the intuition-

istic fuzzy set is worthy of research. what we will review

first are some basic concepts about IFS and intuitionistic

fuzzy ordered information system (IFOIS). In the light of

the application of NRSs in IFOIS, we are about to review

the NRSs and point out the shortcomings of NRSs.

Let U be a non-empty finite universe set, then an IFS in

the universe U can be defined as

A ¼ f\lAðxÞ; mAðxÞ[ g; x 2 U

where the functions lA : U ! ½0; 1�, mA : U ! ½0; 1� rep-

resent the degree of membership and non-membership of x

in A, and satisfy 0� lAðxÞ þ mAðxÞ� 1. Furthermore,

xAðxÞ ¼ 1� lAðxÞ � mAðxÞ denotes the hesitation degree

that x belongs to A. If xAðxÞ ¼ 0, the intuitionistic fuzzy

set degenerates into a classical fuzzy set.

For any IFS A, B, their related operator properties are as

follows

(1) A ¼ B , lAðxÞ ¼ lBðxÞ ^ mAðxÞ ¼ mBðxÞ; 8x 2 U;
(2) A � B , lAðxÞ� lBðxÞ ^ mAðxÞ� mBðxÞ; 8x 2 U;

(3) A \ B ¼ fx 2 U lAðxÞ ^ lBðxÞ;j mAðxÞ _ mBðxÞg;
(4) A [ B ¼ fx 2 U lAðxÞ _ lBðxÞ; mAðxÞ ^ mBðxÞj g
(5) AC ¼ fx 2 U mAðxÞ; lAðxÞj g:
An intuitionistic fuzzy information system(IFIS) is a triple

eI ¼ ðU;AT ;FÞ, where
U ¼ fx1; x2; . . .; xmg represents a non-empty, finite universe set.

AT ¼ ða1; a2; . . .; anÞ is a set of conditional attributes.
F ¼ [

aj2AT
faj ; faj is the domain of attribute aj:

In IFIS eI ¼ ðU;AT;FÞ, for 8a 2 AT , and we define

f ðxi; aÞ� f ðxj; aÞ , ð8 a 2 ATÞ½laðxiÞ� laðxjÞ; maðxiÞ� maðxjÞ�;

and

f ðxi; aÞ� f ðxj; aÞ , ð8 a 2 ATÞ½laðxiÞ� laðxjÞ; maðxiÞ� maðxjÞ�:

They are respectively called increasing and decreasing

partial order in IFIS. If the domain of an attribute is an

increasing or decreasing partial order, then the attribute can

be a criterion. Specifically, if all attributes are criteria, then

IFIS is an intuitionistic fuzzy ordered information system

(IFOIS), which is denoted as eI
� ¼ ðU;AT ;FÞ. Further-

more, we consider eI
� ¼ ðU;AT [ fdg;FÞ as an intu-

itionistic fuzzy ordered decision information system

(IFODIS), where the relation Rd ¼ fðxi; xjÞ 2 U �
U f ðxi; dÞ ¼ f ðxj; dÞ
�

� g is an equivalence relation.

With a view to the difference in intuitionistic fuzzy

datasets, the degree of difference varies between intu-

itionistic fuzzy objects. Hence, we provide a distance

function to measure the distance between any two intu-

itionistic fuzzy numbers. For an IFOIS eI
� ¼ ðU;AT ;FÞ,

A 	 AT , 8xi; xj 2 U, the distance between object xi and xj
on A can be given as follows:

bDAðxi; xjÞ ¼
X

Aj j

n¼1

ð lanðxiÞ � lanðxjÞ
�

�

�

�

q þ manðxiÞ � manðxjÞ
�

�

�

�

qÞ
 !

1
q

:

The distance bDAðxi; xjÞ is named Manhattan distance when

q ¼ 1. bDAðxi; xjÞ turns to be Euclidean distance when

q ¼ 2. Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, for 8xi; xj 2 U,

A 	 AT , the neighborhood relation eR
d
A on attribute A is

defined as:

eR
d
A ¼ fðxi; xjÞ 2 U � U bDAðxi; xjÞ� d

�

�

� g;

where neighborhood threshold dgt0. The neighborhood

relation eR
d
A satisfies reflexivity, symmetry and non-transi-

tivity, and the corresponding neighborhood class of xi

induced by eR
d
A is

f½xi�dA ¼ fxj 2 U ðxi; xjÞ
�

� 2 eR
d
Ag;

where the neighborhood class f½xi�dA is an object set in which

the distance between each object xj and xi is less than or

equal to d.

Definition 2.1 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, for

8X 	 U, A 	 AT , neighborhood threshold dgt0. The lower
and upper approximations of X with respect to neighbor-

hood relation eR
d
A are defined as

eR
d
AðXÞ ¼ fx 2 U f½x�dA 	 X

�

�

� g;

eR
d
AðXÞ ¼ fx 2 U f½x�dA \ X

�

�

� 6¼ ;g:

eR
d
AðXÞ and eR

d
AðXÞ are a pair of approximations opera-

tors. If eR
d
AðXÞ ¼ eR

d
AðXÞ, then X is a definable set, otherwise

X is rough. Three regions of X with respect to eR
d
A can be

obtained as POSdAðXÞ ¼ eR
d
AðXÞ, NEGd

AðXÞ ¼ 
 eR
d
AðXÞ and

BNDd
AðXÞ ¼ eR

d
AðXÞ � eR

d
AðXÞ.

The rough measure of NRS in IFOIS is similar to

classical rough set. In IFOIS eI
� ¼ ðU;AT ;FÞ, attribute

3606 International Journal of Fuzzy Systems, Vol. 24, No. 8, November 2022
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subsets A 	 AT , for 8X 	 U, the roughness of X with

respect to neighborhood relation eR
d
A is defined as

qð eRd
A;XÞ ¼ 1�

eR
d
AðXÞ

�

�

�

�

�

�

eR
d
AðXÞ

�

�

�

�

�

�

�

�

:

Moreover, the approximation quality of D determined by

conditional attribute A is called the degree of dependence.

It can be denoted as

cdðA;DÞ ¼ ¼
Pn

i¼1
eR
d
AðDiÞ

�

�

�

�

�

�

Uj j ;

where Rd ¼ fðxi; xjÞ 2 U � U f ðxi; dÞ ¼ f ðxj; dÞ
�

� g, U=d ¼
fD1;D2; . . .;Dng:

In RST, the classification and acquirement of datasets

have been a research hotspot. Nevertheless, the NRS model

has some shortcomings in the processing of ordered data-

sets, and the partial order relationship between samples in

the NRS model has not been fully explored. Consequently,

the relationship between the objects in the neighborhood

class is not clear so that we cannot obtain the required set

of eligible samples.

In real-life applications, there are many cases involving

sample selections. For example, in the company’s recruit-

ment example mentioned in this paper, the interviewer

selects people on the basis of the recruitment criteria. In the

blind date market, blind daters select their spouses

according to their criteria for mate selection. These prob-

lems are based on different criteria to select more qualified

samples. If we mean to obtain more objects that meet the

conditions, the NRS alone will be difficult to accomplish

the goal. Accordingly, we will introduce a new model to

effectively solve this problem.

3 Applications and Uncertainty Measures
of NDRS in IFOIS

This section will revolve around a novel relation called the

neighborhood dominance relation and center on practical

applications of the model established on this relation.

3.1 Neighborhood Dominance Rough Sets

In the DRSA model, the dominance relation takes into

account the ordering properties of criteria. For simplicity

without loss of generality, we only consider the dominance

relation by the increasing preference. Let us define the

dominance relation in IFOIS. Given an IFOIS

eI
� ¼ ðU;AT;FÞ, for 8xi; xj 2 U, A 	 AT , the dominance

relation eR
�
A on attribute A can be defined as

eR
�
A ¼ fðxi; xjÞ 2 U � U ð8 a 2 AÞ½laðxiÞ� laðxjÞ; maðxiÞ� maðxjÞ�

�

� g:

Combined the idea of the dominance relation and the

neighborhood relation, the neighborhood dominance rela-

tion in IFOIS can be obtained. Let eI
� ¼ ðU;AT;FÞ be an

IFOIS, for 8 xi; xj 2 U, A 	 AT , 0� d� 1, the neighbor-

hood dominance relation eR
d�

on attribute subset A is

defined as

eR
d�
A ¼ fðxi; xjÞ 2 U � U ð8 a 2 AÞ bDAðxi; xjÞ

�

�

�

� d ^ ½laðxiÞ� laðxjÞ; maðxiÞ� maðxjÞ�g;

where eR
d�
A is the neighborhood dominance relation of the

IFOIS. When d ! 1, the intuitionistic fuzzy neighbor-

hood dominance relation degenerates into traditional intu-

itionistic fuzzy dominance relation. It can be found that the

neighborhood dominance relation not only describes the

partial order relationship, but also characterizes the simi-

larity between objects.

Let denote

f½xi�d�A ¼ fxj 2 U xj eR
d�
A xi

�

�

� g

¼ fxj 2 U ð8 a 2 AÞ bDAðxi; xjÞ� d ^ ½laðxiÞ
�

�

�

� laðxjÞ; maðxiÞ� maðxjÞ�g;
f½xi�d�A ¼ fxj 2 U xi eR

d�
A xj

�

�

� g

¼ fxj 2 U ð8 a 2 AÞ bDAðxi; xjÞ� d ^ ½laðxiÞ
�

�

�

� laðxjÞ; maðxiÞ� maðxjÞ�g;

U= eR
d�
A ¼ f f½xi�d�A xi 2 Uj g;

in which i 2 1; 2; . . .; Uj jg, f½xi�d�A and f½xi�d�A represent the

neighborhood dominance and dominated class of xi,

respectively. U= eR
d�
A denotes a classification of U about

eR
d�
A in IFIS.

From the above-mentioned neighborhood dominance

relation and its dominance class, we can obtain NDRS

model in IFOIS.

Definition 3.1 Let eI
� ¼ ðU;AT;FÞ be an IFOIS. For

X 	 U, A 	 AT , the lower and upper approximations of X

with respect to the neighborhood dominance relation eR
d�
A

are defined as follows

eR
d�
A ðXÞ ¼ x 2 U f½x�d�A 	 XÞ

�

�

�

n o

;

eR
d�
A ðXÞ ¼ x 2 U f½x�d�A \ X 6¼ ;Þ

�

�

�

n o

:
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From above definition, eR
d�
A ðXÞ and eRd�

A ðXÞ are a pair

of approximation operators. If eR
d�
A ðXÞ ¼ eR

d�
A ðXÞ, then X

is a definable set, otherwise X is called a rough set in IFIS.

Three disjoint regions of X named positive region, negative

region and boundary region under the intuitionistic fuzzy

neighborhood dominance relation eR
d�
A are denoted as

POSðXÞ ¼ eR
d�
A ðXÞ, NEGðXÞ ¼ 
 eR

d�
A ðXÞ, and

BNDðXÞ ¼ eR
d�
A ðXÞ � eR

d�
A ðXÞ:

When we use the NDRS to handle ordered datasets, the

partial order relationship between the samples is consid-

ered in the neighborhood class, which achieves the purpose

of classifying ordinal datasets and further explores the

relationship between the samples. As shown in Fig. 4, it is

assumed that x1 is a standard object that meets the condi-

tions of the problem, marked in blue. Meanwhile, the

objects marked in yellow and green respectively represent

the completely unqualified objects and partially qualified

objects. When we classify the dataset by the neighborhood

relation and neighborhood dominance relation to obtain

more qualified objects similar to x1, we are able to find that

both qualified, unqualified and partially qualified objects

are included in the neighborhood class. Conversely, the

neighborhood dominance class contains all the eligible

objects that meet the criteria.

From a mathematical point of view, the stricter rela-

tionships will inevitably lead to the finer divisions in the

dataset. So for the same target set X, B 	 AT , we have

f½x�d�B 	 f½x�dB due to excluding unqualified samples, then it

apparently comes to a conclusion that eR
d
BðXÞ 	 eR

d�
B ðXÞ

and eR
d�
B ðXÞ 	 eR

d
BðXÞ. When faced with the different

needs of decision-makers, we can select corresponding

eligible samples from the dataset. Therefore, the NDRS

model can repair the shortcomings of NRS model, and the

roughness of the NDRS is lower than NRS during con-

ceptual approximation.

Proposition 3.1 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, attri-

bute subsets B 	 AT, 0� d1 � d2 � 1, for 8X 	 U, then we

have

(1)
eR
d
BðXÞ 	 eR

d�
B ðXÞ 	 eR

d�
AT ðXÞ,

eR
d
BðXÞ � eR

d�
B ðXÞ � eR

d�
AT ðXÞ;

(2) If eR
d�
B ¼ eR

d�
AT , then

eR
d�
A ðXÞ ¼ eR

d�
AT ðXÞ, eRd�

B ðXÞ ¼ eR
d�
AT ðXÞ.

(3)
eR
d2
B ðXÞ 	 eR

d2 �
B ðXÞ 	 eR

d1 �
B ðXÞ,

eR
d1 �
B ðXÞ 	 eR

d2 �
B ðXÞ 	 eR

d2
B ðXÞ:

Proof

(1) For 8X 	 U, B 	 AT , we have

f½x�d�AT 	 f½x�d�B 	 f½x�dB 	 X. Thus

eR
d
BðXÞ 	 eR

d�
B ðXÞ 	 eR

d�
AT ðXÞ. Otherwise,

ð f½x�d�AT \ XÞ 	 ð f½x�d�B \ XÞ 	 ð f½x�dB \ XÞ, thus
eR
d
BðXÞ � eR

d�
B ðXÞ � eR

d�
AT ðXÞ.

(2) From eR
d�
B ¼ eR

d�
AT , f½x�d�B ¼ f½x�d�AT . Then eR

d�
A ðXÞ ¼

eR
d�
AT ðXÞ and eRd�

B ðXÞ ¼ eR
d�
AT ðXÞ can be proved

directly.

(3) Since 0� d1 � d2 � 1, then f½x�d1 �B 	 f½x�d2 �B 	 f½x�d2B .

Hence, eR
d2
B ðXÞ 	 eR

d2 �
B ðXÞ 	 eR

d1 �
B ðXÞ, eRd1 �

B ðXÞ 	

eR
d2 �
B ðXÞ 	 eR

d2
B ðXÞ can be proved.

In the process of approximating concepts through rough

sets, there are two important factors, the generation of the

class and the determination of target sets. Many people pay

attention to the generation method of the class, but ignore

the determination of the target set. However, in the face of

practical problems, the selection of the target set is often

directly related to the approximate results of the problem.

Fig. 4 The detection of objects between NRS and NDRS
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When we select an object that meets the conditions of the

problem as the target set, its approximate result can better

meet the needs of decision-makers. On the contrary, when

we select an object that does not meet the conditions of the

problem as the target set, its approximate results are harder

to meet the conditions of the actual problem. Therefore,

during conceptual approximation by rough set, how to

determine an optimal set of objects that meets the condi-

tions of the problem is an important issue. Given an

information system eI
� ¼ ðU;AT ;FÞ, according to the

different needs of the problem, we can set a standard object

x� that meets the conditions of the problem. Then the

optimal set named the target set X can be obtained by

X ¼ g½x��d�AT � fx�g.

3.2 Uncertainty Measures of NDRS

Due to the existence of boundary region, there exists

uncertainty in rough set. The rough measure of NDRS is

similar to the classical rough set. In order to measure the

uncertainty of NDRS in IFOIS, the roughness is defined as

follows.

Definition 3.2 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, and

B 	 AT , for 8X 	 U. The rough measure of X under the

neighborhood dominance relation eR
d�
B is defined as

qð eRd�
B ;XÞ ¼ 1�

eR
d�
B ðXÞ

�

�

�

�

�

�

eR
d�
B ðXÞ

�

�

�

�

�

�

�

�

:

The roughness qð eRd�
B ;XÞ is used to reflect the degree of

incomplete knowledge of set X. When eR
d�
B ðXÞ ¼ ;, it is

obvious that qð eRd�
B ;XÞ ¼ 1. Based on the roughness of X,

the accuracy of X is að eRd�
B ;XÞ ¼ 1� qð eRd�

B ;XÞ

Definition 3.3 Given an IFOIS eI
� ¼ ðU;AT [ d;FÞ,

B 	 AT , the approximate quality of decision attribute d

determined by conditional attribute B is called the degree

of dependency, which is defined as

cd� ðB;DÞ ¼ 1

Uj j
X

n

i¼1

eR
d�
B ðDiÞ:

where eR
�
d ¼ fðxi; xjÞ 2 U � U f ðxi; dÞj ¼ f ðxj; dÞg;U=d ¼

fD1;D2; . . .;Dmg:

Proposition 3.2 Let eI
� ¼ ðU;AT;FÞ be an IFOIS, and

B 	 AT . For 8X 	 U, then the following results hold

(1) 0� qð eRd�
B ;XÞ� qð eRd

B;XÞ� 1,

0� cdðB;DÞ� cd� ðB;DÞ� 1;

(2)

qð eRd�
B ;XÞ ¼ 1�

eR
d�
B ðXÞ

�

�

�

�

�

�

eR
d�
B ðXÞ

�

�

�

�

�

�

¼ 1�
eR
d�
B ðXÞ

�

�

�

�

�

�

Uj j� eR
d�
B ð
XÞ

�

�

�

�

�

�

,

qð eRd
B;XÞ ¼ 1�

eR
d

BðXÞ
�

�

�

�

�

�

eR
d

BðXÞ
�

�

�

�

�

�

¼ 1�
eR
d

BðXÞ
�

�

�

�

�

�

Uj j� eR
d

Bð
XÞ
�

�

�

�

�

�

;

(3) If eR
d�
B ¼ eR

d�
AT , then qð eRd�

B ;XÞ ¼ qð eRd�
AT ;XÞ,

cd� ðB;DÞ ¼ cd� ðAT ;DÞ;
(4) If A 	 AT , then qð eRd�

AT ;XÞ� qð eRd�
A ;XÞ� qð eRd

A;XÞ,
cd� ðAT ;DÞ� cd� ðB;DÞ� cdðB;DÞ.

Proof

(1) The proof can be directly obtained by Definition 3.2

and Proposition 3.1.

(2) For 8x 2 eR
d�
B ð
XÞ, we have 8x 2 eR

d�
B ð
XÞ ,

f½x�d�B 	 
X , f½x�d�B \ X ¼ ; , x 62 eR
d�
B ðXÞ ,

x 2 
 eR
d�
B ðXÞ. Therefore, eR

d�
B ðXÞ

�

�

�

�

�

�

�

�

¼ Uj j � eR
d�
B

�

�

�

ð
XÞj: The proof of eR
d�
B is analogous.

(3)
If eR

d�
B ¼ eR

d�
AT , then eR

d�
A ðXÞ ¼ eR

d�
AT ðXÞ and eRd�

B

ðXÞ ¼ eR
d�
AT ðXÞ can be obtained according to Propo

sition 3.1. Thus, qð eRd�
B ;XÞ ¼ qð eRd�

AT ;XÞ and cd� ðB;
DÞ ¼ cd� ðAT ;DÞ can be proved.

(4) Due to A 	 AT , we can have eR
d
AðXÞ 	 eR

d�
A ðXÞ 	

eR
d�
AT ðXÞ, and eRd

AðXÞ � eR
d�
A ðXÞ � eR

d�
AT ðXÞ. There

fore, qð eRd�
AT ;XÞ� qð eRd�

B ;XÞ� qð eRd�
A ;XÞ and cd�

ðAT ;DÞ� cd� ðB;DÞ� cdðB;DÞ can be proved.

Example 3.1 As we all know, there are all kinds of talent

recruitments every year. Excellent talents are always favored

by enterprises, but mediocre talents face very huge com-

petitive pressure when applying. Only by showing their own

strengths can they stand out in the selection process.

Here is an actual case of a company called Alibaba

when interviewing talents, Table 2 is an IFOIS eI
� ¼

ðU;AT ;FÞ about talent interview evaluation, and the

intuitionistic fuzzy value in Table 2 is given by the inter-

viewer according to the performance of the candidates.

Moreover, ten candidates in this interview can be regarded

as ten objects in U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g:
The evaluation conditions which can be regarded as
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conditional attributes AT ¼ fa1; a2; a3; a4; a5g are divided

into ‘‘hard conditions’’ and ‘‘soft performance’’. ‘‘Hard

conditions’’ A ¼ fa1; a2; a3g is composed of attributes a1,

a2 and a3, where a1, a2 and a3 respectively represent

written test results, educational background and work

experience; ‘‘soft performance’’ B ¼ fa4; a5g consists of

attributes a4, a5, where a4, a5 respectively mean language

expression, management ability. Decision attribute d is the

result of the interviewer’s hiring. Y expresses that the

interviewer is hired, N denotes that the interviewer is not

hired. The universe U is partitioned by the decision attri-

bute, which can be denoted as U=d ¼ fDY ;DNg:
The company’s recruitment requirement is a written test

score of at least 70, preferably a graduate degree or above,

and three to five years of work experience, and good

expression and management skills. It is assumed that

meeting the recruitment conditions requires at least

lðxiÞ� 0:7 and mðxiÞ� 0:2 under conditional attributes.

Hence, we set the standard object x� whose membership

degree lðx�Þ� 0:7 and non-membership degree mðx�Þ�
0:2. Suppose d ¼ 0:6.

It is assumed that the conditional attributes A and AT

correspond to the situation when recruitment requirements

decrease and increase. The generated neighborhood classes

with respect to A ¼ fa1; a2; a3g and AT ¼ fa1; a2; a3;
a4; a5g are shown in Table 3.

From the neighborhood classes induced by A and AT, we

can verify that the neighborhood information granules

formed by AT is finer than that formed by A. Then we com-

pute the neighborhood dominance classes with respect to

A ¼ fa1; a2; a3g and AT ¼ fa1; a2; a3; a4; a5g in Table 3.

In order to determine the optimal set that meets different

conditions,wewill discuss it in the followingdifferent situations.

(1) If all conditions are taken into account, then the target

set X1 can be determined by the neighborhood

dominance class of the standard object x� under AT,

which can be denoted as X1 ¼ g½x��d�AT � fx�g ¼
fx4; x5; x6; x9; x10g: Then the target set X1 is a set of

objects that meet all recruitment conditions.

(2) If we only consider ‘‘hard conditions’’ A ¼
fa1; a2; a3g as the recruitment requirements, then the

target set X2 can be expressed as X2 ¼ g½x��d�A �
fx�g ¼ fx4; x5; x6; x9; x10g: We know that X2 is a set

of objects that meet ‘‘hard conditions’’.

The process of determining the optimal set not only

improves the accuracy of the approximate set, but also

makes the approximate result better meet the needs of

decision-makers.

We have acquired neighborhood classes under different

recruitment conditions. According to Definition 2.1, we

can compute the lower and upper approximations of X

under attributes A and AT based on the NRS, which are

eR
d
ATðX1Þ ¼ fx4; x6g; eR

d
AðX2Þ ¼ ;;

eR
d
ATðX1Þ ¼ fx1; x4; x5; x6; x9; x10g: eR

d
AðX2Þ ¼ fx1; x4; x5; x6; x8; x9; x10g:

Table 3 Neighborhood classes and neighborhood dominance classes

U f½x�dAT f½x�dA f½x�d�AT f½x�d�A

x1 fx1; x2; x3; x5; x8; x9; x10g fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g fx1; x5; x9; x10g fx1; x4; x5; x6; x9; x10g
x2 fx1; x2; x3; x7; x8g fx1; x2; x3; x7; x8g fx1; x2g fx1; x2g
x3 fx1; x2; x3g fx1; x2; x3; x7; x8g fx1; x3g fx1; x3g
x4 fx4; x5; x6; x9; x10g fx1; x4; x5; x6; x9; x10g fx4g fx4; x6g
x5 fx1; x4; x5; x6; x10g fx1; x4; x5; x6; x8; x10g fx5; x6g fx4; x5; x6g
x6 fx4; x5; x6; x10g fx1; x4; x5; x6; x9; x10g fx6g fx4; x6g
x7 fx2; x7; x8g fx1; x2; x3; x7; x8g fx7; x8g fx1; x7; x8g
x8 fx1; x2; x7; x8g fx1; x2; x3; x5; x7; x8g fx8g fx1; x5; x8g
x9 fx1; x4; x9; x10g fx1; x4; x6; x9; x10g fx9g fx9g
x10 fx1; x4; x5; x6; x9; x10g fx1; x4; x5; x6; x9; x10g fx10g fx10g

Table 2 Intuitionistic fuzzy ordered information system

U a1 a2 a3 a4 a5 d

x1 (0.7,0.2) (0.7,0.2) (0.6,0.2) (0.7,0.2) (0.7,0.2) N

x2 (0.7,0.2) (0.7,0.2) (0.4,0.3) (0.7,0.2) (0.6,0.2) N

x3 (0.6,0.2) (0.6,0.3) (0.4,0.2) (0.7,0.2) (0.7,0.3) N

x4 (0.8,0.1) (0.8,0.1) (0.8,0.2) (0.7,0.2) (0.8,0.2) Y

x5 (0.7,0.1) (0.7,0.1) (0.8,0.2) (0.8,0.2) (0.7,0.2) Y

x6 (0.8,0.1) (0.8,0.1) (0.8,0.2) (0.8,0.2) (0.7,0.2) Y

x7 (0.5,0.3) (0.7,0.2) (0.5,0.3) (0.6,0.3) (0.6,0.2) N

x8 (0.6,0.2) (0.7,0.2) (0.6,0.3) (0.6,0.2) (0.6,0.1) N

x9 (0.8,0.2) (0.8,0.2) (0.7,0.0) (0.7,0.2) (0.8,0.2) Y

x10 (0.8,0.2) (0.9,0.1) (0.7,0.2) (0.7,0.2) (0.7,0.2) Y
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When we consider all conditions, it is obvious that x4; x6
will certainly be hired, and x1; x4; x5; x6; x9; x10 will possi-

bly be hired. When we only consider ‘‘hard conditions’’,

we can obtain that no one will definitely be hired, and

x1; x4; x5; x6; x8; x9; x10 may be hired.

The neighborhood dominance classes can be shown in

Table 3. According to Definition 3.1, we can obtain the

lower and upper approximations of X based on the NDRS

under attributes A and AT.

eR
d�
AT ðX1Þ ¼ fx4; x5; x6; x9; x10g; eR

d�
A ðX2Þ ¼ fx4; x5; x6; x9; x10g;

eR
d�
AT ðX1Þ ¼ fx1; x4; x5; x6; x9; x10g: eR

d�
A ðX2Þ ¼ fx1; x4; x5; x6; x9; x10g:

When all conditions are considered, we can know that

x4; x5; x6; x9; x10 will surely be hired, and x1; x4; x5; x6; x9
; x10 will possibly be hired. When only the ‘‘hard condi-

tions’’ are considered, we can find that x4; x5; x6; x9; x10 will

certainly be hired, and x1; x4; x5; x6; x9; x10 will possibly be

hired.

The approximate result displays that the accuracy of the

approximate sets is greatly improved. Besides, NDRS can

solve the common problem of selecting more qualified

samples according to the criteria in life. We use rough

measures to prove the superiority of NDRS in this kind of

problems.

The roughness of NRS and NDRS can be obtained under

attributes AT and A

qð eRd
AT ;X1Þ ¼ 1�

eR
d
ATðX1Þ

�

�

�

�

�

�

eR
d
ATðX1Þ

�

�

�

�

�

�

�

�

¼ 4

6
; qð eRd

A;X2Þ ¼ 1�
eR
d
AðX2Þ

�

�

�

�

�

�

eR
d
AðX2Þ

�

�

�

�

�

�

�

�

¼ 1:

qð eRd�
AT ;X1Þ ¼ 1�

eR
d�
AT ðX1Þ

�

�

�

�

�

�

eR
d�
AT ðX1Þ

�

�

�

�

�

�

�

�

¼ 1

6
; qð eRd�

A ;X2Þ ¼ 1�
eR
d�
A ðX2Þ

�

�

�

�

�

�

eR
d�
A ðX2Þ

�

�

�

�

�

�

�

�

¼ 1

6
:

So we can have

qð eRd�
AT ;X1Þ� qð eRd

AT ;X1Þ; qð eRd�
A ;X2Þ� qð eRd

A;X2Þ:

Since DY ¼ fx4; x5; x6; x9; x10g, DN ¼ fx1; x2; x3; x7; x8g.
Then the dependence degree of NRS and NDRS can be

obtained under attributes AT and A in the following.

cdðAT ;DÞ ¼
Pn

i¼1
eR
d
ATðDiÞ

Uj j ¼ 6

10
; cdðA;DÞ ¼

Pn
i¼1
eR
d
AðDiÞ

Uj j ¼ 3

10
:

cd� ðAT ;DÞ ¼
Pn

i¼1
eR
d�
AT ðDiÞ
Uj j ¼ 9

10
; cd� ðA;DÞ ¼

Pn
i¼1
eR
d�
A ðDiÞ
Uj j ¼ 8

10
:

Furthermore, we can obtain

cdðAT;DÞ� cd� ðAT ;DÞ; cdðA;DÞ� cd� ðA;DÞ:

The results have verified that the roughness of the NRS is

higher than that of the NDRS, and the dependence degree

of NRS is lower than NDRS. Therefore, it is more rea-

sonable to use the NDRS to process the intuitionistic fuzzy

dataset to obtain the needed samples than the NRS.

From Example 3.1, it can be observed that only the case

of depicting the target concept at a single granulation is

discussed for IFOIS. However, in real life applications, we

are faced with problems with different conditions and

numerous properties. In view of the superiority of multi-

granulation rough set methods in solving practical prob-

lems and the complementarity of intuitionistic fuzzy set

and multigranulation rough set methods, it is essential to

combine multigranulation methods in NDRS of IFOIS to

investigate the MDRS model. Meanwhile, the combination

of MGRS has great application value in the financial risk

analysis, specific sample extraction and talent selection.

4 Multigranulation Neighborhood Dominance
Rough Sets in IFOIS

As for the Example 3.1, when talents are scarce and it is

necessary to strive for talent resources in the recruitment

process of company, then the interviewer may be required

to meet at least one condition before being hired. When the

talent is abundant and need to be selected from it, then the

interviewer who meets all conditions can be hired. This

phenomenon is exactly in line with the idea of MGRS. In

order to more broadly apply NDRS the above problem, we

introduce optimistic multigranulation neighborhood domi-

nance rough sets (OMNDRS) and pessimistic multigranu-

lation neighborhood dominance rough sets (PMNDRS).

4.1 Optimistic Multigranulation Neighborhood

Dominance Rough Sets in IFOIS

This section will introduce OMNDRS using multiple

neighborhood dominance relations in IFOIS, and discuss

applications and properties of lower and upper approxi-

mation operators of OMNDRS.

Definition 4.1 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, attri-

bute subsets A1;A2; . . .;An 2 ATðn� 2 ATj jÞ, the relation

eR
d�
Ai

represents neighborhood dominance relations on
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attribute subsets Aiði ¼ 1; 2; . . .; nÞ. 8X 2 PðUÞ, f½x�d�Ai
¼

fy ðx; yÞ 2 eR
d�
Ai

�

�

� g are called the i-th neighborhood domi-

nance class which contains x with respect to the i-th

neighborhood dominance relation eR
d�
Ai

. The optimistic

multigranulation lower and upper approximations of X are

defined as follows:

gOM
d�
Pn

i¼1
Ai
ðXÞ ¼ x 2 U _

n

i¼1
ð f½x�d�Ai

	 XÞ
�

�

�

�

� �

;

gOM
d�
Pn

i¼1
Ai
ðXÞ ¼ x 2 U ^

n

i¼1
ð f½x�d�Ai

\ X 6¼ ;Þ
�

�

�

�

� �

;

where logical operations ‘‘_’’ and ‘‘^’’mean ‘‘or’’ and ‘‘and’’,

respectively. gOMd�
Pn

i¼1
Ai

ðXÞ and gOM
d�
Pn

i¼1
Ai
ðXÞ are called

optimistic multigranulation lower and upper approximation

operators. If gOM
d�
Pn

i¼1
Ai
ðXÞ 6¼ gOMPn

i¼1

Ai
d� ðXÞ, then X is a

rough set with respect to neighborhood dominance relations

eR
d�
Ai

ði ¼ 1; 2; . . .; nÞ, otherwise, it is a definable set. The

three disjoint regions of the target set X are respectively

POSðXÞ ¼ gOM
d�
Pn

i¼1
Ai
ðXÞ, NEGðXÞ ¼ 
 gOM

d�
Pn

i¼1
Ai
ðXÞ

and BNDðXÞ ¼ gOM
d�
Pn

i¼1
Ai
ðXÞ� gOM

d�
Pn

i¼1
Ai
ðXÞ.

Example 4.1 (Continued from Example 3.1) There are

many uncertain factors in the annual recruitment, such as

epidemic reasons, financial crisis, war factors, etc. These

factors could cause a large number of unemployment every

year and increase the difficulty of employment. Therefore,

this case can be regarded as the pessimistic situation. How-

ever, there are still some economically developed countries

and regions. Due to existence of economic prosperity, small

population and technical levels, the difficulty of employment

is reduced. Thus, this kind of circumstance can be considered

as the optimistic situation. How can we use the rough set

model to handle recruitment when facing the optimistic sit-

uation or the pessimistic situation.

According to the new recruitment conditions given by

the company, the interviewers often prefer to hire people

who meet these conditions:

Condition 1 Not only the ‘‘hard conditions’’ are passed,

but also the language expression is better.

Condition 2 Not only the ‘‘hard conditions’’ are passed,

but also the management ability is better.

From conditions 1 and 2, we can get two dominance

relations named R1, R2 and their related dominance classes,

when d ¼ 0:6.

R1 ¼

1 0 0 1 1 0 0 0 1 1

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

R2 ¼

1 0 0 1 1 0 0 0 1 1

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Take the target set X ¼ g½x��d�R1
� fx�g ¼ g½x��d�R2

� fx�g ¼
fx4; x5; x6; x9; x10g: Considering condition 1 and condition

2 respectively, we can obtain

eR
d�
1 ðXÞ ¼ fx4; x5; x6; x9; x10g; eR

d�
2 ðXÞ ¼ fx4; x5; x6; x9; x10g;

eR
d�
1 ðXÞ ¼ fx1; x4; x5; x6; x9; x10g: eR

d�
2 ðXÞ ¼ fx1; x4; x5; x6; x9; x10g:

According to condition 1, we can obtain that

x4; x5; x6; x9; x10 will surely be employed, and

x1; x4; x5; x6; x9; x10 will possibly employed. From condition

2, we can know x4; x5; x6; x9; x10 must be hired, however,

candidates x1; x4; x5; x6; x9; x10 may be hired.

In the optimistic situation, it is possible that interviewers are

not good at expressing or his management ability needs to be

improved when the ‘‘hard conditions’’ are passed, such talents

can be cultivated after entry. There is aslo a situation that can-

didates are excellent in all aspects. So we raise two questions.

Question 1 If the company requires the candidate to

meet at least one of the conditions, who will surely be

hired.

Question 2 If the company requires the candidate to

meet all conditions, who will possibly be hired.

According to Definition 4.1, we can obtain

gOM
d�
1þ2ðXÞ ¼ fx4; x5; x6; x9; x10g; gOM

d�
1þ2ðXÞ ¼ eR

d�
1 ðXÞ [ eRd�

2 ðXÞ;

gOM
d�
1þ2ðXÞ ¼ fx1; x4; x5; x6; x9; x10g: gOMd�

1þ2ðXÞ ¼ eR
d�
1 ðXÞ \ eRd�

2 ðXÞ:
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From the above approximation results, we can know

x5; x6; x9; x10 must be employed when the company con-

sider at least one condition, and x3; x5; x6; x8; x9; x10 may be

employed when both conditions are considered. Besides,

the properties of OMNDRS can be obtained.

Proposition 4.1 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS,

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ, 0� d1 � d2 � 1, then

(1)
gOM

d2 �
Pn

i¼1
Ai
ðXÞ 	 gOM

d1 �
Pn

i¼1
Ai
ðXÞ,

(2)
gOM

d1 �
Pn

i¼1
Ai
ðXÞ 	 gOM

d2 �
Pn

i¼1
Ai
ðXÞ.

Proposition 4.2 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS,

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. The optimistic multi-

granulation lower and upper approximations under IFOIS

have following properties

ðOL1ÞgOM
d�
Pn

i¼1
Ai
ðXÞ 	 X; ðContractionÞ

ðOU1ÞgOM
d�
Pn

i¼1
Ai
ðXÞ � X; ðExtensionÞ

ðOL2ÞgOM
d�
Pn

i¼1
Ai
ð
XÞ ¼ 
 gOMd�

Pn

i¼1
Ai

ðXÞ; ðDualityÞ

ðOU2ÞgOM
d�
Pn

i¼1
Ai
ð
XÞ ¼ 
 gOMd�

Pn

i¼1
Ai

ðXÞ; ðDualityÞ

ðOL3ÞgOM
d�
Pn

i¼1
Ai
ð;Þ ¼ ;; ðNormalityÞ

ðOU3ÞgOM
d�
Pn

i¼1
Ai
ð;Þ ¼ ;; ðNormalityÞ

ðOL4ÞgOM
d�
Pn

i¼1
Ai
ðUÞ ¼ U; ðCo-normalityÞ

ðOU4ÞgOM
d�
Pn

i¼1
Ai
ðUÞ ¼ U; ðCo-normalityÞ

ðOL5ÞgOM
d�
Pn

i¼1
Ai
ðX \ YÞ 	 gOM

d�
Pn

i¼1
Ai
ðXÞ \ gOM

d�
Pn

i¼1
Ai
ðYÞ; ðL-multiplicationÞ

ðOU5ÞgOM
d�
Pn

i¼1
Ai
ðX [ YÞ � gOMd�

Pn

i¼1
Ai

ðXÞ [ gOM
d�
Pn

i¼1
Ai
ðYÞ; ðL-additionÞ

ðOL6ÞX 	 Y ) gOMd�
Pn

i¼1
Ai

ðXÞ 	 gOM
d�
Pn

i¼1
Ai
ðYÞ; ðGranularityÞ

ðOU6ÞX 	 Y ) gOMd�
Pn

i¼1
Ai
ðXÞ 	 gOM

d�
Pn

i¼1
Ai
ðYÞ; ðGranularityÞ

ðOL7ÞgOM
d�
Pn

i¼1
Ai
ðX [ YÞ � gOM

d�
Pn

i¼1
Ai
ðXÞ [ gOM

d�
Pn

i¼1
Ai
ðYÞ; ðU-additionÞ

ðOU7ÞgOM
d�
Pn

i¼1
Ai
ðX \ YÞ 	 gOM

d�
Pn

i¼1
Ai
ðXÞ \ gOM

d�
Pn

i¼1
Ai
ðYÞ: ðU-multiplicationÞ

Proof For a better explanation, we will give the proof of

the properties under two neighborhood dominance rela-

tions. Assume n ¼ 2;A;B 	 AT ; when A ¼ B; the above

properties obviously hold. Thus, when A 6¼ B; then

ðOL1Þ For 8x 2 gOM
d�
AþBðXÞ, according to Definition 4.1,

we have f½x�d�A 	 X or f½x�d�B 	 X. Since the

neighborhood dominance relation eR
d�
A satisfies

reflexivity, then x 2 f½x�d�A and x 2 f½x�d�B , x 2 X

can be otained. Thus, gOM
d�
AþBðXÞ 	 X.

ðOU1Þ For 8x 2 X, owing to the reflexivity of eR
d�
A ;

f½x�d�A \ X 6¼ ; and f½x�d�B \ X 6¼ ; hold, then

x 2 gOM
d�
AþBðXÞ. Thus, X 	 gOM

d�
AþBðXÞ.

ðOL2Þ For 8x 2 gOM
d�
AþBð
XÞ, we have x 2 gOMd�

AþB

ð
XÞ , f½x�d�A 	 
X or f½x�d�B 	 
X, then

f½x�d�A 	 
X f½x�d�B 	 
X;

, f½x�d�A \ X ¼ ; f½x�d�B \ X ¼ ;;

, x 62 gOM
d�
AþBðXÞ , x 2 
 gOM

d�
AþBðXÞ:

Thus, equation ðOL2Þ holds.

ðOU2Þ We know that gOM
d�
AþBðXÞ ¼ 
 gOM

d�
AþBð
XÞ;

then 
 gOM
d�
AþBðXÞ ¼ 
 
 gOM

d�
AþBð
XÞ

� �

¼ gOM
d�
AþB

ð
XÞ:
ðOL3Þ In terms of (OL1), we know that gOM

d�
AþBð;Þ 	 ;,

and it is known that ; 	 gOM
d�
AþBð;Þ holds, therefore,

gOM
d�
AþBð;Þ ¼ ;:

ðOU3Þ Similar to the proof of (OL3), we can obtain

gOM
d�
AþBð;Þ ¼ ;:

ðOL4Þ gOM
d�
AþBðUÞ ¼ gOM

d�
AþBð
 ;Þ, according to prop-

erty (OL2), gOM
d�
AþBð
 ;Þ ¼ 
 gOM

d�
AþBð;Þ ¼ 
; ¼ U:

ðOU4Þ gOM
d�
AþBðUÞ ¼ gOM

d�
AþBð
 ;Þ;according to prop-

erty (OU2), gOM
d�
AþBð
 ;Þ ¼ 
 gOM

d�
AþBð;Þ ¼ 
; ¼ U:

ðOL5Þ For 8x 2 gOM
d�
AþBðX \ YÞ, owing to Defini-

tion 4.1, we can obtain f½x�d�A 	 X \ Y or

f½x�d�B 	 X \ Y , that is, f½x�d�A 	 X and f½x�d�A 	 Y holds

or f½x�d�B 	 X and f½x�d�B 	 Y holds. It is equivalent to

f½x�d�A 	 X or f½x�d�B 	 X and f½x�d�A 	 Y or f½x�d�B 	 Y ,

according to the definition of optimisitc multigranulation

lower approximations, then x 2 gOM
d�
AþBðXÞ \ gOM

d�
AþB

ðYÞ. Hence, gOM
d�
AþBðX \ YÞ 	 gOM

d�
AþBðXÞ\ gOM

d�
AþBðYÞ.

ðOU5ÞFor 8x 2 gOM
d�
AþBðXÞ [ gOM

d�
AþBðYÞ, we have x 2

gOM
d�
AþBðXÞ or x 2 gOM

d�
AþBðYÞ, that is, f½x�d�A \ X 6¼ ;

and f½x�d�B \ X 6¼ ; hold or f½x�d�A \ Y 6¼ ; and f½x�d�B \ Y 6
¼ ; hold. It is equivalent to f½x�d�A \ ðX [ YÞ 6¼ ; and

f½x�d�B \ ðX [ YÞ 6¼ ;, according to the definition of

optimistic multigranulation upper approximations, then
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x 2 gOM
d�
AþBðX [ YÞ. Hence, gOM

d�
AþBðX [ YÞ � gOM

d�
AþB

ðXÞ [ gOM
d�
AþBðYÞ:

ðOL6ÞDue to X 	 Y , we can obtain gOM
d�
AþBðX \ YÞ

¼ gOM
d�
AþBðXÞ. On account of property (OL5), it is

obvious that gOM
d�
AþBðXÞ 	 gOM

d�
AþBðXÞ \ gOM

d�
AþBðYÞ,

then we have gOM
d�
AþBðXÞ ¼ gOM

d�
AþBðXÞ \ gOM

d�
AþBðYÞ.

Therefore, gOM
d�
AþBðXÞ 	 gOM

d�
AþBðYÞ.

ðOU6Þ Due to X 	 Y , we can obtain gOM
d�
AþB

ðX [ YÞ ¼ gOM
d�
AþBðYÞ, according to property (OU5), it

is obvious that gOM
d�
AþBðYÞ � gOM

d�
AþBðXÞ [ gOM

d�
AþBðYÞ,

then we have gOM
d�
AþBðYÞ ¼ gOM

d�
AþBðXÞ [ gOM

d�
AþBðYÞ.

Therefore, gOM
d�
AþBðXÞ 	 gOM

d�
AþBðYÞ.

ðOL7Þ It is known that X 	 X [ Y; Y 	 X [ Y , from

property (OL6), we can learn that gOM
d�
AþBðXÞ 	

gOM
d�
AþBðX [ YÞ, gOM

d�
AþBðYÞ 	 gOM

d�
AþBðX [ YÞ. There-

fore, gOM
d�
AþBðX [ YÞ � gOM

d�
AþBðXÞ [ gOM

d�
AþBðYÞ holds.

ðOU7Þ It is obvious that Y \ X 	 X;X \ Y 	 Y , from

property (OU6), we can learn that gOM
d�
AþBðXÞ

� gOM
d�
AþBðX \ YÞ, gOMd�

AþBðYÞ � gOM
d�
AþBðX \ YÞ. There

fore, gOM
d�
AþBðX \ YÞ 	 gOM

d�
AþBðXÞ \ gOM

d�
AþBðYÞ holds.

In accordance with the idea of optimistic multigranulation

intuitionistic fuzzyroughset,weknowthat theexampledescribed

above is a situation of reduced recruitment conditions. Similarly,

we can think of the pessimisitc situation as improved recruitment

conditions, how to dealwith this situation throughRST. Thenwe

have the PMNDRS model which we will investigate next.

4.2 Pessimistic Multigranulation Neighborhood

Dominance Rough Sets in IFOIS

In this section, the PMNDRS is introduced to handle the

approximation problem in IFOIS, and the applications and

properties of lower and upper approximation operators are

investigated.

Definition 4.2 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, attri-

butes subsets A1;A2; . . .;An 2 ATðn� 2 ATj jÞ, the relation

eR
d�
Ai

represents neighborhood dominance relations on

attribute subsets Aiði ¼ 1; 2; . . .; nÞ: 8X 2 PðUÞ; f½x�d�Ai
¼

fy ðx; yÞ 2 eR
d�
Ai

�

�

� g is called the i-th neighborhood

dominance class which contains x with respect to the i-th

neighborhood dominance relation eR
d�
Ai

. The pessimistic

multigranulation lower and upper approximations of X are

defined as follows:

gPM
d�
Pn

i¼1
Ai
ðXÞ ¼ x 2 U ^

n

i¼1
ð f½x�d�Ai

	 XÞ
�

�

�

�

� �

;

gPM
d�
Pn

i¼1
Ai
ðXÞ ¼ x 2 U _

n

i¼1
ð f½x�d�Ai

\ X 6¼ ;Þ
�

�

�

�

� �

;

where logical operations ‘‘^’’ represents ‘‘and’’, ‘‘_’’ rep-

resents ‘‘or’’. gPMd�
Pn

i¼1
Ai

ðXÞ and gPM
d�
Pn

i¼1
Ai
ðXÞ are called

pessimisticmultigranulation lower and upper approximation

operators. If gPM
d�
Pn

i¼1
Ai
ðXÞ 6¼ gPM

d�
Pn

i¼1
Ai
ðXÞ, we call X a

rough set with respect to neighborhood dominance relations

eR
d�
Ai

ði ¼ 1; 2; . . .; nÞ, otherwise, we call X a definable set.

The three disjoint regions of the target set X are respectively

POSðXÞ ¼ gPM
d�
Pn

i¼1
Ai
ðXÞ;NEGðXÞ ¼ 
 gPM

d�
Pn

i¼1
Ai
ðXÞ and

BNDðXÞ ¼ gPM
d�
Pn

i¼1
Ai
ðXÞ � gPM

d�
Pn

i¼1
Ai
ðXÞ.

Example 4.2 (Continued from Example 4.1) We have

discussed the recruitment in the optimistic situation, then

we consider the application of rough set model in recruit-

ment under pessimistic situations. In the pessimistic situ-

ation, the difficulty of employment is improved. It is

required that interviewers who meet all conditions will be

hired, so we have raised two questions.

Question 3 If the company requires the candidate to

meet all the conditions, who will be surely hired.

Question 4 If the company requires the candidate to

meet at least one of conditions, who will be possibly

hired.

According to Definition 4.2, we can obtain

gPM
d�
1þ2ðXÞ ¼ fx4; x5; x6; x9; x10g; gPM

d�
1þ2ðXÞ ¼ eR

d�
1 ðXÞ \ eRd�

2 ðXÞ;

gPM
d�
1þ2ðXÞ ¼ fx1; x4; x5; x6; x9; x10g: gPM

d�
1þ2ðXÞ ¼ eR

d�
1 ðXÞ [ eRd�

2 ðXÞ:

From the lower and upper approximations, x5; x6; x10 will

surely be employed when both conditions are considered.

Meanwhile, x3; x5; x6; x8; x9; x10 will possibly be employed

when the company considered at least one condition.

Futhermore, the properties of PMNDRS can be obtained.

Proposition 4.3 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS,

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ, 0� d1 � d2 � 1, then

(1)
gPM

d2 �
Pn

i¼1
Ai
ðXÞ 	 gPM

d1 �
Pn

i¼1
Ai
ðXÞ,
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(2)
gPM

d1 �
Pn

i¼1
Ai
ðXÞ 	 gPM

d2 �
Pn

i¼1
Ai
ðXÞ.

Proposition 4.4 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS,

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. The pessimistic multi-

granulation lower and upper approximations under IFOIS

have following properties

ðPL1ÞgPM
d�
Pn

i¼1
Ai
ðXÞ 	 X; ðContractionÞ

ðPU1ÞgPM
d�
Pn

i¼1
Ai
ðXÞ � X; ðExtensionÞ

ðPL2ÞgPM
d�
Pn

i¼1
Ai
ð
XÞ ¼


 gPMd�
Pn

i¼1
Ai

ðXÞ; ðDualityÞ

ðPU2ÞgPM
d�
Pn

i¼1
Ai
ð
XÞ ¼


 gPMd�
Pn

i¼1
Ai

ðXÞ; ðDualityÞ

ðPL3ÞgPM
d�
Pn

i¼1
Ai
ð;Þ ¼ ;; ðNormalityÞ

ðPU3ÞgPM
d�
Pn

i¼1
Ai
ð;Þ ¼ ;; ðNormalityÞ

ðPL4ÞgPM
d�
Pn

i¼1
Ai
ðUÞ ¼ U; ðCo-normalityÞ

ðPU4ÞgPM
d�
Pn

i¼1
Ai
ðUÞ ¼ U; ðCo-normalityÞ

ðPL5ÞgPM
d�
Pn

i¼1
Ai
ðX \ YÞ ¼ gPM

d�
Pn

i¼1
Ai

ðXÞ \ gPMd�
Pn

i¼1
Ai
ðYÞ; ðL-multiplicationÞ

ðPU5ÞgPM
d�
Pn

i¼1
Ai
ðX [ YÞ ¼ gPMd�

Pn

i¼1
Ai

ðXÞ [ gPMd�
Pn

i¼1
Ai
ðYÞ; ðL-additionÞ

ðPL6ÞX 	 Y ) gPMd�
Pn

i¼1
Ai

ðXÞ 	 gPM
d�
Pn

i¼1
Ai
ðYÞ; ðGranularityÞ

ðPU6ÞX 	 Y ) gPMd�
Pn

i¼1
Ai

ðXÞ 	 gPM
d�
Pn

i¼1
Ai
ðYÞ; ðGranularityÞ

ðPL7ÞgPM
d�
Pn

i¼1
Ai
ðX [ YÞ � gPM

d�
Pn

i¼1
Ai

ðXÞ [ gPMd�
Pn

i¼1
Ai
ðYÞ; ðU-additionÞ

ðPU7ÞgPM
d�
Pn

i¼1
Ai
ðX \ YÞ 	 gPM

d�
Pn

i¼1
Ai

ðXÞ \ gPMd�
Pn

i¼1
Ai
ðYÞ: ðU-multiplicationÞ

Proof For a better explanation, we will give the proof of

the properties based on two neighborhood dominance

relations. Suppose n ¼ 2, A;B 	 AT , when A ¼ B, it is

obviously true. Therefore, when A 6¼ B, then

ðPL1ÞFor 8x 2 gPM
d�
AþBðXÞ, according to Definition 4.2,

we have f½x�d�A 	 X and f½x�d�B 	 X. Because the neigh-

borhood dominance relation eR
d�
A satisfies reflexivity,

then x 2 f½x�d�A and x 2 f½x�d�B , we can obtain x 2 X.

Thus, gPM
d�
AþBðXÞ 	 X.

ðPU1Þ For 8x 2 X, due to the reflexivity of eR
d�
A , we

have f½x�d�A \ X 6¼ ; and f½x�d�B \ X 6¼ ;, then

x 2 gPM
d�
AþBðXÞ. Thus, X 	 gPM

d�
AþBðXÞ.

ðPL2Þ For 8x 2 gPM
d�
AþBð
XÞ, we have x 2 gPMd�

AþB

ð
XÞ , f½x�d�A 	 
X and f½x�d�B 	 
X, then

f½x�d�A 	 
X f½x�d�B 	 
X;

, f½x�d�A \ X ¼ ; f½x�d�B \ X ¼ ;;

, x 62 gPM
d�
AþBðXÞ , x 2 
 gPM

d�
AþBðXÞ:

ðPU2Þ We know that gPM
d�
AþBðXÞ ¼ 
 gPM

d�
AþBð
XÞ,

then 
 gPM
d�
AþBðXÞ ¼ 
 
 gPM

d�
AþBð
XÞ

� �

¼ gPM
d�
AþB

ð
XÞ.
ðPL3Þ In terms of (PL1), we know that gPM

d�
AþBð;Þ 	 ;,

and it is known that ; 	 gPM
d�
AþBð;Þ holds, therefore,

gPM
d�
AþBð;Þ ¼ ;:

ðPU3Þ Similar to the proof of (PL3), we can obtain

gPM
d�
AþBð;Þ ¼ ;:

ðPL4Þ gPM
d�
AþBðUÞ ¼ gPM

d�
AþBð
 ;Þ, according to prop-

erty (PL2), gPM
d�
AþBð
 ;Þ ¼ 
 gPM

d�
AþBð;Þ ¼ 
; ¼ U.

ðPU4Þ gPM
d�
AþBðUÞ ¼ gPM

d�
AþBð
 ;Þ, according to prop-

erty (PU2), gPM
d�
AþBð
 ;Þ ¼ 
 gPM

d�
AþBð;Þ ¼ 
; ¼ U.

ðPL5Þ For 8x 2 gPM
d�
AþBðX \ YÞ, thanks to Definition 4.2,

we can obtain 8x 2 gPM
d�
AþBðX \ YÞ , f½x�d�A 	 X \ Y

and f½x�d�B 	 X \ Y , that is, f½x�d�A 	 X; f½x�d�A 	 Y; hold

and f½x�d�B 	 X; f½x�d�B 	 Y hold. It is equivalent to

f½x�d�A 	 X; f½x�d�B 	 X and f½x�d�A 	 Y; f½x�d�B 	 Y;

according to the definition of the pessimistic multigran-

ulation lower approximations, then x 2 gPM
d�
AþBðXÞ \

gPM
d�
AþBðYÞ: Hence, gPM

d�
AþBðX \ YÞ ¼ gPM

d�
AþBðXÞ

\gPMd�
AþBðYÞ:

ðPU5Þ For 8x 2 gPM
d�
AþBðXÞ [ gPM

d�
AþBðYÞ, we have x 2

gPM
d�
AþBðXÞ or x 2 gPM

d�
AþBðYÞ, that is, f½x�

d�
A \ X 6¼ ; or

f½x�d�B \ X 6¼ ; holds or f½x�d�A \ Y 6¼ ; or f½x�d�B \ Y 6¼ ;
holds. It is equivalent to f½x�d�A \ ðX [ YÞ 6¼ ; or
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f½x�d�B \ ðX [ YÞ 6¼ ;, according to the definition of

pessimistic multigranulation upper approximations, then

x 2 gPM
d�
AþBðX [ YÞ. Hence, gPM

d�
AþBðX [ YÞ ¼ gPM

d�
AþB

ðXÞ [ gPMd�
AþBðYÞ.

ðPL6Þ Owing to X 	 Y , gPM
d�
AþBðX \ YÞ ¼ gPM

d�
AþBðXÞ

can be obtained. Owing to property (PL5), it is obvious

that gPM
d�
AþBðX \ YÞ ¼ gPM

d�
AþBðXÞ \ gPM

d�
AþBðYÞ, then

gPM
d�
AþBðXÞ ¼ gPM

d�
AþBðXÞ \ gPM

d�
AþBðYÞ. Thus, gPM

d�
AþB

ðXÞ 	 gPM
d�
AþBðYÞ.

ðPU6Þ Owing to X 	 Y , we can obtain

gPM
d�
AþBðX [ YÞ ¼ gPM

d�
AþBðYÞ. According to property

(PU5), it is obvious that gPM
d�
AþBðX [ YÞ ¼

gPM
d�
AþBðXÞ [ gPM

d�
AþBðYÞ, then gPM

d�
AþBðYÞ ¼ gPM

d�
AþB

ðXÞ [ gPMd�
AþBðYÞ. Therefore, gPM

d�
AþBðXÞ 	 gPM

d�
AþBðYÞ.

ðPL7Þ It is known that X 	 X [ Y; Y 	 X [ Y , from

property (PL6), we can learn that gPM
d�
AþBðXÞ

	 gPM
d�
AþBðX [ YÞ, gPMd�

AþBðYÞ 	 gPM
d�
AþBðX [ YÞ. There-

fore, gPM
d�
AþBðXÞ [ gPM

d�
AþBðYÞ 	 gPM

d�
AþBðX [ YÞ.

ðPU7Þ It is obvious that Y \ X 	 X;X \ Y 	 Y , from

property (PU6), we can learn that gPM
d�
AþBðXÞ

� gPM
d�
AþBðX \ YÞ, gPMd�

AþBðYÞ � gPM
d�
AþBðX \ YÞ. There-

fore, gPM
d�
AþBðX \ YÞ 	 gPM

d�
AþBðXÞ \ gPM

d�
AþBðYÞ.

5 The Uncertainty Measures of MNDRS in IFOIS

According to Pawlak rough set, the uncertainty exists

because of the boundary region of the rough set. The larger

the boundary region of the rough set, the uncertainty of the

rough set becomes greater. Similarly, there exists uncer-

tainty in MNDRS models. This section will mainly intro-

duce two elementary measures to measure the uncertainty

of MNDRS in IFOIS. Furthermore, the relationship

between single-granularity NDRS and MNDRS will be

explored in this section.

Proposition 5.1 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, and

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. For 8X 	 U, there have

(1)
gOM

d�
Pn

i¼1
Ai
ðXÞ ¼ [

n

i¼1

eR
d�
Ai

ðXÞ; gOMd�
Pn

i¼1
Ai
ðXÞ ¼

\
n

i¼1

eR
d�
Ai

ðXÞ:

(2)
gPM

d�
Pn

i¼1
Ai
ðXÞ ¼ \

n

i¼1

eR
d�
Ai

ðXÞ; gPMd�
Pn

i¼1
Ai
ðXÞ ¼

[
n

i¼1

eR
d�
Ai

ðXÞ:

Proof Since the number of granulations in IFOIS is finite, we

only need prove these properties in IFOIS which has two neigh-

borhood dominance relations (A;B 	 AT) for convenience.

(1) For 8x 2 gOM
d�
AþBðXÞ; we have f½x�

d�
A 	 X or f½x�d�B 	

X: We can obtain x 2 eR
d�
A ðXÞ or x 2 eR

d�
B ðXÞ , x 2 eR

d�
A

ðXÞ [ eRd�
B ðXÞ: Hence, gOM

d�
AþBðXÞ ¼ eR

d�
A ðXÞ [ eRd�

B ðXÞ:

For 8x 2 gOM
d�
AþBðXÞ; we have f½x�d�A \ X 6¼ ; and

f½x�d�B \ X 6¼ ;: We can obtain x 2 eR
d�
A ðXÞ and x 2 eR

d�
B

ðXÞ , x 2 eR
d�
A ðXÞ \ eRd�

B ðXÞ. Hence, gOM
d�
AþBðXÞ ¼

eR
d�
A ðXÞ \ eRd�

B ðXÞ.
(2)For 8x 2 gPM

d�
AþBðXÞ, we have f½x�d�A 	 X and

f½x�d�B 	 X , x 2 eR
d�
A ðXÞ and x 2 eR

d�
B ðXÞ , x 2 eR

d�
A

ðXÞ \ eRd�
B ðXÞ. Hence, gPMd�

AþBðXÞ ¼ eR
d�
A ðXÞ \ eRd�

B ðXÞ.

For 8x 2 gPM
d�
AþBðXÞ, we have f½x�

d�
A \ X 6¼ ; or f½x�d�B \

X 6¼ ; , x 2 eR
d�
A ðXÞ or x 2 eR

d�
B ðXÞ , x 2 eR

d�
A ðXÞ

[ eRd�
B ðXÞ. Hence, gOM

d�
AþBðXÞ ¼ eR

d�
A ðXÞ [ eRd�

B ðXÞ.
The proof is complete. h

Proposition 5.2 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, and

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. For 8X; Y 	 U, then

(1)
gOM

d�
Pn

i¼1
Ai
ðX \ YÞ ¼ [

n

i¼1

eR
d�
Ai

ðXÞ \ eRd�
Ai

ðYÞ
� �

,

gPM
d�
Pn

i¼1
Ai
ðX \ YÞ ¼ \

n

i¼1

eR
d�
Ai

ðXÞ \ eRd�
Ai

ðYÞ
� �

:

(2)
gOM

d�
Pn

i¼1
Ai
ðX \ YÞ ¼ \

n

i¼1

eR
d�
Ai

ðXÞ \ eRd�
Ai

ðYÞ
� �

,

gPM
d�
Pn

i¼1
Ai
ðX \ YÞ ¼ [

n

i¼1

eR
d�
Ai

ðXÞ [ eRd�
Ai

ðYÞ
� �

:

The proof can be obtained by Proposition 5.1.

Proposition 5.3 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, and

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. For 8X 	 U, then

(1)
gPM

d�
Pn

i¼1
Ai
ðXÞ 	 eR

d�
Ai

ðXÞ 	 gOM
d�
Pn

i¼1
Ai

ðXÞ 	 eR
d�
[n
i¼1
ðXÞ.
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(2)
gPM

d�
Pn

i¼1
Ai
ðXÞ � eR

d�
Ai

ðXÞ � gOM
d�
Pn

i¼1
Ai

ðXÞ � eR
d�
[n
i¼1
ðXÞ.

The proof can be obtained by Proposition 5.1, Defini-

tions 4.1 and 4.2.

From above the definition of single- granularity NDRS

in IFOIS, we have defined two uncertainty measures of

single- granularity NDRS. In the following, we will discuss

the roughness and dependence degree of MNDRS in

IFOIS, which is similar to single-granularity NDRS.

Definition 5.1 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, and

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. For 8X 	 U, the opti-

mistic and pessimistic roughmeasures of X can be defined as

qd�O ðX;
Pn

i¼1 AiÞ ¼ 1�
gOM

d�
Pn

i¼1
Ai
ðXÞ

�

�

�

�

�

�

�

�

gOM
d�
Pn

i¼1
Ai
ðXÞ

�

�

�

�

�

�

�

�

;

qd�P ðX;
Pn

i¼1 AiÞ ¼ 1�
gPM

d�
Pn

i¼1
Ai
ðXÞ

�

�

�

�

�

�

�

�

gPM
d�
Pn

i¼1
Ai
ðXÞ

�

�

�

�

�

�

�

�

;

where X 6¼ ;: From the definition we can obtain that if

gOM
d�
Pn

i¼1
Ai
ðXÞ ¼ ; or gPM

d�
Pn

i¼1
Ai
ðXÞ ¼ ;, then qd�O ðX;

Pn
i¼1 AiÞ ¼ 1 or qd�P ðX;

Pn
i¼1 AiÞ ¼ 1. The accuracy

measures of X are ad�O ðX;
Pn

i¼1 AiÞ ¼ 1� qd�O
ðX;
Pn

i¼1 AiÞ, ad�P ðX;
Pn

i¼1 AiÞ ¼ 1� qd�P ðX;
Pn

i¼1 AiÞ.
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Proposition 5.4 Let eI
� ¼ ðU;AT;FÞ be an IFOIS, and

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. For 8X 	 U, then

qd�
[
n

i¼1
Ai

ðXÞ� qd�O ðX;
Xn

i¼1
AiÞ� qd�Ai

ðXÞ� qd�P ðX;
Xn

i¼1
AiÞ:

Definition 5.2 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, and

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. The approximate

quality of decision attribute d by
Pn

i¼1 Ai called the opti-

mistic and pessimistic degree of dependence is defined as

cd�OMðD;
Pn

i¼1 AiÞ ¼
1

Uj j
X

s

t¼1

gOM
d�
Pn

i¼1
Ai
ðDtÞ

�

�

�

�

�

�

�

�

 !

;

cd�PM ðD;
Pn

i¼1 AiÞ ¼
1

Uj j
X

s

t¼1

gPM
d�
Pn

i¼1
Ai
ðDtÞ

�

�

�

�

�

�

�

�

 !

:
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Proposition 5.5 Let eI
� ¼ ðU;AT ;FÞ be an IFOIS, and

Ai 	 ATði ¼ 1; 2; . . .; n; n� 2 ATj jÞ. For 8X 	 U, then

cd�PM ðD;
Xn

i¼1
AiÞ� cd� ðD;AiÞ� cd�OMðD;

Xn

i¼1
AiÞ� cd� ðD; [

n

i¼1
AiÞ:

6 Algorithms for Computing the Roughness
and the Degree of Dependence in IFODIS

In this section, we design two algorithms based on NDRS,

MNDRS, and other compared models to verify the feasi-

bility of proposed methods through uncertainty measures.

Algorithm 1 is about computing the roughness and the

degree of dependence of single granularity NDRS and NRS

in IFODIS. Firstly, an intuitionistic fuzzy ordered decision

information system (IFODIS) eI
� ¼ ðU;AT [ fdg;FÞ is

inputted as a testing system, where the granulation

Ai 	 ATði ¼ 1; 2; . . .; nÞ. Then in step 2, we compute all

decision classes U=d ¼ fD1;D2; . . .;Dmg and the target set

X that meets the conditions of the problem. From steps 4–6,

we calculate neighborhood dominance class and neigh-

borhood class for every x. The steps 7–10 are to initialize

the lower and upper approximations as ;: The steps 11–17

are compute lower approximations and upper approxima-

tions of NDRS and NRS according to Definition 3.1. In the

steps 18-22, we first initialize the degree of dependence as

;, and then we obtain the roughness and the dependence

degree of NDRS and NRS from Definitions 3.2 and 3.3.

Finally, steps 23–26 are to return the roughness and the

dependence degree in IFODIS.

Based on the Algorithm 1, the lower and upper

approximations of every decision class can be obtained.

According to Proposition 5.1, and the relationship between

NDRS and MNDRS, we design the Algorithm 2 to com-

pute the roughness and the dependence degree of

OMNDRS and PMNDRS. Firstly, we input an IFODIS

eI
� ¼ ðU;AT [ fdg;FÞ as a testing system, the target set

X ¼ g½x��d�Ai
� fx�g, and the decision class U=d ¼

fD1;D2; . . .;Dmg: Then we can obtain the lower and upper

approximation sets by Algorithm 1 considering granularity

Aiði ¼ 1; 2; . . .; nÞ, and discuss two kinds of MNDRS. In

the steps 1–4, we initialize the lower and upper

approximation sets of OMNDRS and PMNDRS. Steps 5–

11 are to compute the lower and upper approximation sets

of OMNDRS and PMNDRS. In steps 12–15, the roughness

of OMNDRS and PMNDRS can be acquired by Definition

5.1. From steps 16 to 17, the dependence degree of

OMNDRS and PMNDRS are initialized as ;: In steps

18-21, the dependence degree of OMNDRS and PMNDRS

are calculated by Definition 5.2. Finally, the roughness and

the dependence degree of OMNDRS and PMNDRS are

returned in steps 22-24.

According to the time complexity of Algorithm 1 and 2

in Table 4, we can know the time complexity of NRS and

NDRS maintains the same level. The computation of

MNDRS is based on Algorithm 1, hence, the total time

complexity of MNDRS is more than that of NRS and

NDRS.

7 Experiments and Analysis

In this section, We will perform a series of experiments

through the designed algorithms to verify the effectiveness

and the applicability of the proposed methods. we down-

load nine datasets from UCI (http://archive.ics.uci.edu/

ml/datasets.php) database. To analyze the robustness of the

proposed method, we randomly select four datasets to add

noise data proportionally in our experiments. Besides, the

superiority of the NDRS and MNDRS will be further

illustrated using these nine UCI datasets. The details of

datasets are outlined in Table 5. This experimental results

are implemented on a personal computer with processor

(2.5 GHz Intel Core i5) and memory (8GB 2133MHz

DDR4). The platform of experiment environment is Python

3.8.

We should not ignore that the background of this

research is IFODIS. The intuitionistic fuzzy value is

composed of the degree of membership, the degree of non-

membership, and the degree of hesitation. So we need to

construct the intuitionistic fuzzy data based on the down-

load data sets. To ensure feasibility and rationality, we first

normalize the values in the datasets to the value between 0

and 1 as the degree of membership. Since it is acknowl-

edged the hesitation of different objects in reality is dif-

ferent and cannot be determined, we intend to use random

Table 4 The time complexity

of Algorithms 1 and 2
Steps NRS NDRS MNDRS

1–10 Oð ATj j Uj jÞ þ Oð ATj j Dj

�

�

�

�Þ Oð ATj j Uj jÞ þ Oð ATj j Dj

�

�

�

�Þ Oð ATj j Dj

�

�

�

�Þ
11–15 Oð Uj j Dj

�

�

�

�Þ Oð Uj j Dj

�

�

�

�Þ Oð Dj

�

�

�

�Þ
18–22 Oð ATj j Dj

�

�

�

�Þ Oð ATj j Dj

�

�

�

�Þ Oð Dj

�

�

�

�Þ
Total Oð ATj j Uj j þ 2 ATj j Dj

�

�

�

�þ Uj j Dj

�

�

�

�Þ Oð ATj j Uj j þ 2 ATj j Dj

�

�

�

�þ Uj j Dj

�

�

�

�Þ Oð ATj j Dj

�

�

�

�þ 2 Dj

�

�

�

�Þ
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numbers to describe the degree of hesitation. Besides, the

value of each object under the decision attribute d in the

data sets remains unchanged. Finally, the IFODIS can be

obtained.

7.1 The Robustness Evaluations of NDRS Model

The noise of these datasets is obtained by increasing the

hesitation degree of IFS by 0.05 each time. Subsequently,

the roughness metrics of NRS and NDRS are computed for

different levels of noise datasets. The experimental results

are shown in Fig. 5, with each subplot showing the

roughness of the model with different noise levels.

From Fig. 5, we can intuitively observe that the fluctu-

ation of NDRS is smaller than NRS with the increase of

noise levels. In addition, we set about to display the stan-

dard deviation (STD) of every computation results.

Meanwhile, it is obvious to find that STD of NDRS is

smaller than NDR. Therefore, it comes to a conclusion that

the robustness of NDRS model is better than NRS model.

7.2 The Superiority Evaluations of NDRS Model

In this subsection, the roughness and dependence of the

NDRS and NRS are respectively compared to verify the

effectiveness of NDRS model. What cannot be ignored is

Table 5 The testing data sets Data sets Data Source Objects Attributes Decision class

Immunother UCI 90 7 2

Wine UCI 178 13 3

Glass UCI 214 9 6

Haberman UCI 306 3 2

Banknote authentication UCI 1372 4 2

Wireless UCI 2000 7 4

Customer Churn UCI 3334 10 2

Wine Quality UCI 4898 11 7

HTRU UCI 17899 8 2

(a) Banknote authentication (b) Customer Churn

(c) Wine (d) Wine Quality

Fig. 5 The robustness of models with different noise levels
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the selection of target concepts and attributes in the process

of conceptual approximation. As a result of the different

distribution of different datasets, we set the membership

degree of the standard object x� to be greater than or equal

to the minimum membership value, and the non-member-

ship degree to be less than or equal to the maximum non-

membership value in the intuitionistic fuzzy data, then the

target set X under different conditions can be determined as

X ¼ g½x��d�Ai
� fx�g: In order to ensure the reliability of the

experiment results, we select A1 ¼ AT � fa1g in each

dataset during the conceptual approximation. Besides, we

perform parameter analysis and vary the radius of neigh-

borhood dominance classes and neighborhood classes to

obtain a more intuitive and clear experimental comparisons

for each dataset. The process of experiments are displayed

in Figs. 6 and 7.

In Fig. 6, we can directly find that with the increase of

the neighborhood radius, the roughness of NRS and NDRS

will also become larger. Meanwhile, the roughness of NRS

is always greater than or equal to the roughness of NDRS

with the variation of neighborhood radius. As shown in

Fig. 7, consistent with the expected conclusion, the

dependence of NDRS maintains a higher level compared

with NRS, this results show that the NDRS has a better

classification accuracy. Consequently, it comes to a con-

clusion that NDRS is very feasible and effective for sample

selection and conceptual approximation tasks (Figs. 8, 9).

7.3 The Comparison Evaluations of NDRS

and MNDRS Models

In the datasets, there are 2 ATj j conditional attribute subsets

in each information system eI
� ¼ ðU;AT [ fdg;FÞ has

ATj j: For convenience of comparison, we select two con-

ditional attribute subsets as granulations, where two gran-

ulations can be expressed as A1 and A2. The attribute

subsets are A1 ¼ AT � fa1g;A2 ¼ AT � fa2; a3g: The

experimental process consists of two parts, one is the

comparison of the roughness and dependence of the NRS

and NDRS, and the other is the comparison of the uncer-

tainty measurement between NDRS and MNDRS. The

granulations considered in two kinds of MNDRS models

are A1 and A2; and the granulation in NDRS and NRS is A2:

The selection of the target set is similar to Sect. 7.2. The

computation results of Algorithms 1 and 2 are showed in

Table 6.

(a) Immunother (b) Wine (c) Glass

(d) Harberman (e) Banknote authentication (f) Wireless

(g) Customer Churn (h) Wine Quality (i) HTRU

Fig. 6 The roughness of NRS and NDRS at different neighborhood radius
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According to the calculation results of the roughness and

the dependence degree in Table 6, Figs. 3 and 4 can be

drawn. In Fig. 3, It is shown that the dependence degree of

three rough set models is decreasing according to the order

of OMNDRS, single-granularity NDRS and PMNDRS. As

in Proposition 5.4, the degree of dependence of PMNDRS

is smallest, the dependence degree of OMNDRS is largest.

And the dependence degree of NDRS is between PMNDRS

and OMNDRS. Therefore, under the OMNDRS, the per-

centage of objects classified into the positive region is

greater than single-granularity NDRS and PMNDRS.

In Fig. 4, we can find that roughness of OMNDRS is the

smallest, the roughness of PMNDRS is the largest. And the

roughness of single-granularity NDRS is between

OMNDRS and PMNDRS. In the conceptual approxima-

tion, the approximate set become increasingly rough in the

order of OMNDRS, single-granularity NDRS, and

PMNDRS. In practical applications, we should flexibly use

single-granularity or multi-granulation rough sets to

approximate concepts.

In the selection of the target set, the roughness of the

approximate set will change with the neighborhood radius

of X. We take the data set ‘‘Wine’’ as an instance to obtain

the calculation results under different neighborhood radius

of X as shown in Fig. 5. It is easy to find that the roughness

of three rough set models is decreasing as the neighbor-

hood radius of X varies, and the roughness of OMNDRS

changes more significantly with the increase of the neigh-

borhood radius of X. When the neighborhood radius of

X reaches 15, the minimum roughness of OMNDRS can be

obtained. The results show the influence of the size of the

target set X on the roughness of the three rough set models

and verify the importance of target set selection.

From the calculation results based on ‘‘Wine’’ data set in

Figs. 6 and 7, the changes of the roughness and the

dependence degree of the three rough set models also

depend on the neighborhood radius of the neighborhood

dominance classes. We compare the changes of the

roughness and the dependence degree of the three rough set

models under the neighborhood dominance classes with

different neighborhood radius, and we can get that the

roughness of three rough set models is decreasing as the

neighborhood radius of neighborhood dominance classes

ranges from |AT| to |AT|/8. When the neighborhood radius

of neighborhood dominance classes is |AT|/3 or above, the

roughness of the three rough set models reaches the max-

imum. When the neighborhood radius of X is |AT|/6 or

below, the minimum roughness of the three rough set

(a) Immunother (b) Wine (c) Glass

(d) Harberman (e) Banknote authentication (f) Wireless

(g) Customer Churn (h) Wine Quality (i) HTRU

Fig. 7 The dependence of NRS and NDRS at different neighborhood radius
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models can be acquired. In practical problems, we can

reduce the roughness of the approximate set to obtain the

required approximate set by adjusting the neighborhood

radius of the neighborhood dominance classes.

Also, Fig. 7 shows that the degree of dependence of

three rough set models is increasing as the neighborhood

radius of neighborhood dominance classes decreases.

When the neighborhood radius of neighborhood dominance

classes is |AT|/3 or above, the dependence degree of the

three rough set models is almost maintained at a minimum

level. When the neighborhood radius of neighborhood

dominance classes is |AT|/6 or below, the denpendence

degree of the three rough set models reaches the maximum.

Besides, the result shows that as the neighborhood radius of

(a) The degree of dependence about three rough set models (b) The roughness of three rough set models

Fig. 8 The evaluation metrics of the proposed models

(a) The changes of roughness with the

neighborhood radius of X

(b) The changes of the roughness with the

attributes

(c) The changes of the dependence degree

with the attributes

Fig. 9 The uncertainty metrics of proposed models in relation to the neighborhood and attributes

Table 6 The computation

results of Algorithm 1 and 2
Data sets Roughness Dependence degree

NDRS OMNDRS PMNDRS NDRS OMNDRS PMNDRS

Immunother 0.4270 0.3933 0.4270 0.3556 0.6444 0.3556

Wine 0.3175 0 0.4654 0.7865 0.7865 0.7865

Glass 0.2941 0.1176 0.4286 0.8692 0.9206 0.8692

Haberman 0.7484 0.0131 0.7484 0.0294 0.0948 0.0294

Banknote authentication 0.5372 0.1294 0.5372 0.4745 0.6268 0.4745

Wireless 0.8785 0.5077 0.9423 0.6430 0.7127 0.6430

Customer Churn 0.5381 0.4961 0.5381 0.2010 0.2895 0.2010

Wine quality 0.3224 0.2623 0.3224 0.2973 0.3873 0.2973

HTRU 0.3521 0.2623 0.3521 0.5510 0.6835 0.5510
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neighborhood dominance classes becomes smaller, the

dependence degree of OMNDRS is always greater than that

of PMNDRS and NDRS. Through comparing the changes

of the roughness and the dependence degree with different

neighborhood radius of neighborhood dominance classes,

we can obtain the validity and correctness of our proposi-

tion and definition more closely.

8 Conclusion

The classical neighborhood relation constitutes a cover of

the universe. It is able to reduce the influence of noisy

samples, and select samples that are close to the original

object. However, there is a partial order relationship in the

actual problems, the classical neighborhood relation cannot

solve the problem. Therefore, we introduced the intu-

itionistic fuzzy neighborhood dominance relation, which

combines the classical neighborhood relation with the

dominance relation. Based on the intuitionistic fuzzy

neighborhood dominance relation, we discussed the single-

granularity NDRS model and apply it to actual cases. Then

we extended the single-granularity NDRS model to

OMNDRS and PMNDRS model. To better illustrate the

effectiveness of proposed method, we designed algorithms

and experiments to evaluate the model from multiple

aspects. Furthermore, we are committed to further

improving the applicability of proposed method and con-

tinuing to extend the theoretical basis of the model.

In our further research, we will consider applying NDRS

to the field of feature selection and introduce dynamic

mechanisms, so that the application scope of the model can

be extended.
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